TABLE OF CONTENTS

Preface

Acknowledgement

Summary

1. **Introduction** ... 1-1
 1.1 Outline of this work ... 1-2

2. **Rock masses as construction materials** .. 2-1
 2.1 Rocks and their main features.. 2-3
 2.1.1 Fresh rocks ... 2.3
 2.1.2 The influence from some minerals .. 2.4
 2.1.3 The effect of alteration and weathering .. 2.5
 2.1.4 Geological names and mechanical properties of rocks .. 2.6
 2.2 Discontinuities in rock .. 2-6
 2.2.1 Faults ... 2.7
 2.2.2 Joints and their main features .. 2-8
 2.2.3 The main jointing characteristics .. 2.9
 2.2.4 The rock mass .. 2-10
 2.3 Rock mass characterization for design and construction purposes .. 2-11

3. **Collection of geo-data - limitations and uncertainties** ... 3-1
 3.1 Geo-data found before, during and after excavation ... 3-2
 3.2 Some methods used in geo-data collection .. 3-4
 3.2.1 Geological observations and mapping ... 3-5
 3.2.2 Joint surveys ... 3-7
 3.2.3 Core drilling ... 3-8
 3.2.4 Geophysical measurements ... 3-10
 3.2.5 Exploratory adits and shafts .. 3-10
 3.2.6 Laboratory and field tests .. 3-10
 3.3 Uncertainties and errors in geo-data collection .. 3-11
 3.3.1 Uncertainties caused by spatial variability of rock masses .. 3-11
 3.3.2 Measurement errors .. 3-12
 3.3.3 Model uncertainties .. 3-14
 3.4 Summary ... 3-14

4. **The combination of geo-data into a rock mass index** ... 4-1
 4.1 The structure of a rock mass index .. 4-2
 4.1.1 The input parameters selected ... 4-2
 4.1.2 The Rock Mass index (RMi) ... 4-3
 4.1.3 The combination of the input parameters .. 4-4
 4.2 Calibration of RMi from known rock mass strength data ... 4-5
 4.3 Numerical values of the input parameters to RMi ... 4-10
 4.3.1 The compressive strength of intact rock (s_c) ... 4-10
 4.3.2 The block volume (Vb) .. 4-11
 4.3.3 The joint condition factor (jC) ... 4.12
 4.4 Possible areas of application of the RMi ... 4-18
 4.5 Discussion ... 4-19
 4.5.1 Limitations of the RMi .. 4-19
 4.5.2 Other similar rock mass characterization methods .. 4-20
5 Rock masses characterized by the RMi.......................... 5-1
 5.1 On continuous and discontinuous rock masses 5-1
 5.2 Zoning of the rock masses into structural regions 5-3
 5.3 Principles in characterizing the variations in rock masses 5-4
 5.3.1 Variations in the rock material 5-4
 5.3.2 Variations in the jointing ... 5-5
 5.3.3 Singularities and weakness zones 5-14
 5.3.4 Summary of the possibilities and methods to determine the block
 volume or the jointing parameter where the jointing characteristics vary 5-16
6 The use of RMi in design of rock support for underground openings 6-1
 6.1 Stability analyses and rock support design 6-2
 6.2 Instability and failure modes in underground excavations 6-3
 6.2.1 Special modes of instability and behaviour related to weakness zones 6-5
 6.2.2 Main types of failure development 6-6
 6.3 The main features influencing underground stability 6-7
 6.3.1 The inherent properties of the rock mass 6-8
 6.3.2 The external ground features 6-9
 6.3.3 The excavation features .. 6-10
 6.3.4 The time-dependent features 6-12
 6.3.5 Summary of Section 6.3 ... 6-13
 6.4 RMi applied to assess rock support 6-14
 6.4.1 Stability and rock support in continuous materials 6-15
 6.4.2 Stability and rock support in discontinuous (jointed) materials 6-29
 6.4.3 Stability and rock support of faults and weakness zones.............. 6-36
 6.4.4 Comments to the RMi method for assessing rock support 6-42
7 RMi parameters applied in prediction of tunnel boring penetration 7-1
 7.1 Factors influencing the TBM performance 7-2
 7.2 Prediction models .. 7-2
 7.2.1 The NTH prognosis model ... 7-3
 7.3 The use of RMi parameters to characterize rock masses for TBM 7-4
 7.3.1 The rock material properties 7-4
 7.3.2 The jointing features ... 7-6
 7.3.3 Assessment of the net advance of boring 7-9
 7.3.4 Example ... 7-11
 7.3.5 Discussion of the RMi method for TBM penetration assessment 7-12
8 Possible other applications of the RMi in rock mechanics and rock engineering 8-1
 8.1 Applying RMi to determine the constants in the Hoek-Brown failure criterion 8-2
 8.1.1 The original Hoek-Brown failure criterion 8-2
 8.1.2 The modified Hoek-Brown failure criterion 8-4
 8.2 RMi used to evaluate shear strength of rock masses 8-5
 8.3 RMi used in the input to ground response curves 8-7
 8.4 RMi used for numerical ground characterization in the NATM 8-9
 8.4.1 The use of RMi in NATM classification 8-10
 8.4.2 RMi used for input to Fenner-Pacher ground response diagrams 8-12
 8.5 The use of RMi parameters in classification systems 8-15
 8.5.1 Input to the RMR (Geomechanics) system 8-16
 8.5.2 Input to the Q-system .. 8-17
 8.5.3 Input to other classification systems 8-18
 8.6 A contribution to improved communication 8-18
 8.6.1 Identification chart for geologic materials 8-18
 8.6.2 Possible use of RMi in numerical models 8-22
9 Discussion and conclusions ... 9-1
 9.1 On the layout of the RMi system 9-1
 9.1.1 Comparisons with the principles in other rock engineering systems 9-3
 9.2 On the structure of the RMi ... 9-4
APPENDICES

Appendix 1: On joints and jointing
1 Joint characteristics............................. A1-3
2 Jointing characteristics............................A1-5
 2.1 Joint sets..A1-5
 2.2 Joint spacing....................................A1-6
 2.3 Jointing pattern and block types..................A1-7
 2.3.1 Block types and sizesA1-8
3 Attitude of joints..................................A1-10
4 Development of jointing in various rockA1-10
 4.1 Jointing in igneous rocks.....................A1-11
 4.2 Jointing in sedimentary rocks...............A1-11
 4.3 Jointing in metamorphic rocks................A1-12
5 Statistical distribution of joints..................A1-12
6 Summary..A1-13

Appendix 2: On faults and weakness zones
1 Zones of weak materials..........................A2-2
2 Faults and fracture zones..........................A2-3
 2.1 Occurrence of faults and fractures............A2-6
 2.2 Composition and structure of faults..........A2-8
 2.3 Gouge (filling materials) in faults..........A2-8
 2.4 Tension fracture zones........................A2-9
 2.5 Shear fault and fracture zones................A2-10
 2.5.1 Coarse-fragmented crushed zones..........A2-12
 2.5.2 Small-fragmented crushed zones...........A2-12
 2.5.3 Sand-rich crushed zones....................A2-12
 2.5.4 Clay-rich crushed zones....................A2-12
 2.5.5 Foliation shear zones......................A2-13
 2.6 Altered faults................................A2-14
 2.6.1 Altered clay-rich zones....................A2-14
 2.6.2 Altered leached (crushed) zones..........A2-15
3 Recrystallized and cemented/welded zones........A2-15
4 Description of weakness zones..................A2-15
5 Summary..A2-17

Appendix 3: Methods to quantify the parameters applied in the RMi
1 Methods to determine the uniaxial compressive strength of rocks.............A3-2
 1.1 The uniaxial compressive strength (s_c)........A3-3
 1.2 Effect of saturation upon strength.............A3-5
1.3 Compressive strength determined from the point-load strength...............A3-7
 1.3.1 The point load strength index (Is)............A3-8
 1.3.2 The correlation between Is and s_c.........A3-8
1.4 Compressive strength estimated from Schmidt hammer rebound number
1.5 Compressive strength assessed from simple field test
1.6 Compressive strength estimated from rock description
1.6.1 Main geological characteristics
1.6.2 Strength assessment from rock name
1.6.3 Reduction in strength from anisotropy
1.6.4 Reduction in strength from weathering and alteration
1.7 Summary

2 Methods to determine the joint condition factor (JC)
2.1 Estimating the joint roughness factor (jR)
2.1.1 Field measurement of large scale roughness
2.1.2 The joint waviness factor (jw)
2.1.3 The joint smoothness factor (js)
2.1.4 The joint roughness factor found from jw and js
2.2 Estimating the joint alteration factor (jA)
2.2.1 Clean joints
2.2.2 Coated joints
2.2.3 Filled joints
2.2.4 Characterization and rating of the joint alteration factor (jA)
2.3 Estimating the ratio jR/jA from friction angle recordings
2.4 The joint size and continuity factor (jL)
2.5 Summary

3 Methods to determine the block size
3.1 Types of block volume and joint density measurements
3.2 Block volume measurements
3.2.1 Block volume found from joint spacings
3.2.2 Block volume measured directly in situ or in drill cores
3.2.3 Methods to find the equivalent block volume where joints do not delimit blocks
3.3 Block diameter registrations
3.4 Rock quality designation (RQD)
3.4.1 Correlation between RQD and the volumetric joint count (Jv)
3.5 The volumetric joint count (Jv)
3.5.1 Block volume (Vb) estimated from the volumetric joint count (Jv)
3.6 Joint frequency measurements
3.6.1 2-D frequency in an area or surface
3.6.2 1-D frequency measurements along a scanline or drill core
3.7 Joint spacing registrations
3.8 Weighted joint density measurements (wJd)
3.8.1 Correlation between wJd and Jv
3.9 Use of refraction seismic measurements to assess block volume
3.9.1 Influence from the intact rock and the in situ conditions
3.9.2 Methods to assess the degree of jointing from in situ seismic velocities
3.9.3 Possible errors and limitations applying seismic velocities for jointing assessments
3.10 Summary of the correlations to determine the block size

4 Methods to characterize the type and shape of rock blocks

5 "Translation" of qualitative descriptions into numerical values
5.1 Rock material characteristics
5.2 Joint characteristics
5.3 Block size or quantity of joints
5.4 Faults and weakness zones
5.5 Examples of numerical values found from qualitative descriptions
5.5.1 Example 1 (from Gjøvik (underground) Stadium)
5.5.2 Example 2
5.5.2 Example 3
Appendix 4: An investigation of the quality of various jointing measurements

1. Layout of the investigations performed
2. Block shape measurement
3. 2-D and 1-D joint frequency registrations
 3.1 2-D frequency measurements
 3.2 1-D frequency measurements
4. Weighted joint density measurements
5. Calculations of block volume from simplified jointing measurements
6. Rock quality designation (RQD)
 6.1 Connection between the RQD and the volumetric joint count (Jv)
 6.2 Connection between block volume and "block size" expressed as RQD/Jv in the Q system
7. Summary

Appendix 5: Using refraction seismic velocities to characterize jointing

1. Features influencing the magnitude of longitudinal sonic velocities
 1.1 Factors influencing the sonic velocities in intact rock
 1.2 The influence from in situ factors on measured sonic velocities
2. Earlier methods used to characterize rock masses from seismic velocities
 2.1 Connections between jointing and longitudinal velocities
 2.2 Rock quality estimated from the seismic velocity ratio
 2.3 Correlations between seismic velocities and rock mass characteristics
3. Methods for assessing the degree of jointing from in situ seismic velocities
 3.1 Alt. 1: Correlations between jointing and sonic velocity are not known
 3.2 Alt. 2: Two or more correlations exist between jointing and velocities
 3.3 Worked examples
4. Summary

Appendix 6: Description of the tests and data used in the calibration of the RMi

1. Sample 1. Results from triaxial laboratory tests on Panguna andesite
2. Sample 2. Large, compressive laboratory test on granitic rock from Stripa
3. Sample 3. In situ tests on mine pillars of sandstone in the Laisvall mine
4. Sample 4. Strength data found from back analysis of a slide in the Långsele mine
5. Sample 5 - 7. Results from large-scale laboratory triaxial tests
 5.1 Sample 5. Caledonian clay-schist from Germany
 5.2 Sample 6. Mesozoic sandstone from Germany
 5.3 Sample 7. Palaeozoic siltstone from Germany
6. Sample 8 - 11. Results from field and in situ tests
 6.1 Gjøvik Olympic mountain hall, Norway
 6.2 Granfoss road tunnels, Oslo
 6.3 Haukre hydropower plant, Telemark, Norway
 6.4 Vinstra hydropower plant, Norway
 6.5 Horga hydropower plant, Buskerud, Norway
 6.6 Tromsø road tunnel, Norway
 6.7 Nappstraumen road tunnel, Lofoten, Norway
 6.8 Stetind road tunnel, Nordland, Norway
 6.9 Njunis tunnel, Bardu, Norway
 6.10 Sumbiar road tunnel, The Faroe Islands
 6.11 Thingbæk chalk mines, Ålborg, Denmark

Appendix 7: Collected data on ground conditions and rock support in constructed underground openings

1. Description of the locations
 1.1 Gjøvik Olympic mountain hall, Norway
 1.2 Granfoss road tunnels, Oslo
 1.3 Haukre hydropower plant, Telemark, Norway
 1.4 Vinstra hydropower plant, Norway
 1.5 Horga hydropower plant, Buskerud, Norway
 1.6 Tromsø road tunnel, Norway
 1.7 Nappstraumen road tunnel, Lofoten, Norway
 1.8 Stetind road tunnel, Nordland, Norway
 1.9 Njunis tunnel, Bardu, Norway
 1.10 Sumbiar road tunnel, The Faroe Islands
 1.11 Thingbæk chalk mines, Ålborg, Denmark
Appendix 8: Collected data on ground condition and TBM boring performance
1 Boring experience and ground condition at Svartisen Power plant A8-1
 1.1 Measured rock properties.. A8-1
 1.2 Rock mass description in tunnel locations.. A8-3
2 Boring experience and ground condition at Meråker hydropower plant......................... A8-5
 2.1 Observations at chainage 750 ... A8-6
 2.2 Observations at the brook intake, chainage 10020 .. A8-6

Appendix 9: A method to estimate the tangential stresses around underground openings
1 Estimating the magnitude of the in situ ground stresses .. A9-1
2 The tangential stresses developed around an underground opening A9-4
3 A practical method to estimate the magnitude of the tangential stresses A9-6

Appendix 10: Symbols used
1 General .. A10-1
2 Rock properties ... A10-1
3 Jointing and block characteristics .. A10-1
4 Stresses and related parameters .. A10-2
5 Refraction seismic properties and features ... A10-3
6 Rock mass properties and features .. A10-3
 6.1 Classification systems and parameters ... A10-4
 6.2 Parameters and features in the Rock Mass index (RMi) .. A10-4
7 Parameters in the RMi rock support method ... A10-4
8 Parameters and features in the RMi method for TBM penetration assessment method A10-5