Chapter 10

REFERENCES

Amadei B. (1988):
Strength of a regularly jointed rock mass under biaxial and axisymmetric loading conditions.

Amberg W. and Christini F. (1986):
The new Austrian tunnelling method in railway tunnel construction.
Rasegna dei lavori pubblici, No 5, pp. 241/1 - 252/1.

American Geological Institute (1962):
Dictionary of geological terms.
Dolphin Reference Books, 545 pp.

The squeezing potential of rocks around tunnels; theory and prediction.

Rock joint properties and sampling.

Baecher G.S. and Lanney N.A. (1978):
Trace length biases in joint surveys.

Barton N. (1973):
A review of the shear strength of filled discontinuities.
(also in Norwegian Geotechnical Institute, Publ. No. 105)

Engineering classification of rock masses for the design of rock support.
Rock Mechanics 6, 1974, pp. 189-236.

Estimation of support requirements for underground excavations.

Barton N. (1976):
The shear strength of rock and rock joints.

Barton N. and Choubey V. (1977):
The shear strength of rock joints in theory and practice.
Rock Mechanics, No. 1/2, pp. 1-54, (also in Norwegian Geotechnical Institute, Publ. No. 119)

Application of Q-system in design decisions concerning dimensions and appropriate support for underground installations.

Barton N. and Bandis S. (1980):
Some effects of Scale on the shear strength of joints. Technical note.

Barton N. (1987):
Predicting the behaviour of underground openings in rock.

Barton N. (1990a):
Cavern design for Hong Kong rocks.
Norwegian Geotechnical Institute, Publ.no. 180, pp. 1-24.

Barton N. (1990b):
Scale effects or sampling bias?

Barton N. and Bandis S. (1990):
Review of predictive capabilities of JRC-JCS model in engineering practise.

Barton N. (1993):
Physical and discrete element models of excavation and failure in jointed rock.
Keynote lecture presented at ISRM Int. Symp. on Assessment and Prevention of failure Phenomena in Rock Engineering, Istanbul, Turkey.

Private communication.

Glossary of geology.
American Geological Institute, Fall Church, Virginia, second edition 1980.

Bergh-Christensen J. (1968):
On the blastability of rocks. (in Norwegian)

Brekke T.L. (1965):
On the measurement of the relative potential swellability of hydrothermal montmorillonite clay from joints and faults in Pre-Cambrian and Paleozoic rocks in Norway.

Brekke T.L. and Selmer-Olsen R. (1965):
Stability problems in underground construction caused by montmorillonite carrying joints and faults.

Brekke T.L. and Howard T.R. (1972):
Stability problems caused by seams and faults.

Bridges M.C. (1976):
Presentation of fracture data for rock mechanics.
Proc. 2nd Australia-New Zealand Conf. on Geomechanics, Brisbane

British Standard Institution (1981):
Code of practice for site investigations.

Broch E. and Franklin J.A. (1972):
The point-load strength test.

Broch E. and Leivestad S.I. (1973):
On the influence of moisture and anisotropy upon shear strength of rocks. (in Norwegian)
Publ. no.9, Geol. Inst., The Technical University of Norway, 30 pp.

Broch E. (1977):
The point-load test and its use in engineering geology. (in Norwegian)

Broch E. (1979):
Changes in rock strength caused by water.

Estimation of strength anisotropy using the point-load test.

Broch E. (1988):
Site investigations.
Brook N. (1985):
The equivalent core diameter method of size and shape correction in point load testing.

Brosch F.J. (1986):
Geology and the classification of rock masses - examples from Austrian tunnels.

Brown and Hoek (1978):
Trends in relationships between measured in situ stresses and depth.

Putting the NATM into perspective.

Ground response curves for rock tunnels.

From theory to practice in rock engineering.

Research and development for design and construction of large rock caverns.

Determination of shear failure envelope in rock masses.

Discussion on "Determination of shear failure envelope in rock masses. by Ucar R."

Burton A.N. (1965):
Classification of rocks for rock mechanics.

The geologist in the engineering organization.
Chapter 1 in Application of Geology to Engineering Practice (Berkey Volume): Geological Society of America, 327 pp.

Estimation of joint set characteristics from surface mapping data.
Monograph on Rock Mechanics Applications in Mining. SME-AIME, pp 65-73.

Cameron-Clarke I.S. and Budavari S. (1981):
Correlation of rock mass classification parameters obtained from borecore and in-situ observations. J. Engn. Geol., Vol 17, pp. 19-53.

Carmichael R.S., Ed. (1989): Handbook of physical properties of rocks and minerals. CRC Press, Florida

Deere D. and Miller R.D. (1966):
Engineering classification and index properties for intact rock.

Design of tunnel liners and support system.
Office of high speed ground transportation, U.S. Department of transportation. PB 183799.

Deere D.U. (1971):
The foliation shear zone - an adverse engineering geologic feature of metamorphic rocks.

Engineering geology and underground construction.

Denkhaus H.G. (1965):
Strength of rock material and rock systems.

Characterizing rock joint geometry with joint system models.

Dowding C.H. and Miller J.B. (1975):
Comparison of predicted and encountered geology for seven Colorado tunnels.
Report prepared for NSF, MIT Department of Civil Engineering, R 75-6, 1975.

Future challenges in site characterization.
Site Characterization and Exploration, NSF Site Characterization Workshop, ASCE.

Guidelines for the design of tunnels.
ITA Working Group on General Approaches to the Design of Tunnels.

Einstein H., Steiner W. and Baecher G.B. (1979):
Assessment of empirical design methods for tunnels in rock.
RETC 1979, pp. 683-705.

Einstein H.H. and Baecher G.S. (1982):
Probabilistic and statistical methods in engineering geology. I. Problem statement and introduction to solution.

Probabilistic and statistical methods in engineering geology.

Observation, quantification and judgement: Terzaghi and engineering geology.

Swelling rock.
ISRM News, No. 2, pp. 57-60.

Eriksson C. and Krauland N. (1975):
Rock mechanical views regarding the slide in the hanging wall in the Långsele mine.

Eshwaraiah H.V. and Upadhyaya V.S (1990):
Influence of rock joints in performance of major civil engineering structures.

Variation in measuring rock joints for tunnelling.
Tunnels & Tunnelling, April 1983, pp 15 -18.

Fairhurst C. (1988):
Foreword.

Faria Santos C. and Bieniawski Z.T. (1989):
Floor design in underground coal mines.

Rock engineering - applications in tunnelling.
Tunnels & Tunnelling, July 1977, pp. 84-88.

Deficiencies in rock test data.

Fisher P. and Banks D. (1978):
Influence of the regional geologic setting on site geologic features.

Franklin J.A. (1970):
Observations and tests for engineering description and mapping of rocks.

Logging the mechanical character of rock.

Franklin J.A. (1975):
Safety and economy of tunneling.
Gardener R. (1992):
Seismic refraction as a tool in the evaluation of rock quality for dredging and engineering purposes: case studies.

Report on the logging of rock cores for engineering purposes.

Point-load strength: An index for classification of rock material.

Limitations of dimension and displacement data from single faults and the consequences for data analysis and interpretation.

Golser J. (1979):
Another view of the NATM.
Tunnels and Tunnelling, March 1979, pp. 41.

The deformability of joints.
Determination of the in-situ modulus of deformation of rock; Amer. Soc. Test & Mats., STP 477, pp. 174-196.

Block theory and its application to rock engineering.
Prentice-Hall, Englewood Cliffs, NJ

Introduction to rock mechanics.

Graham P.C. (1976):
Rock exploration for machine manufacturers.

Greminger M. (1982):
Experimental studies of the influence of rock anisotropy on size and shape effects in point-load testing.

Grimstad E. (1993):
Private communication.

Grimstad E. and Barton N. (1993):
Updating the Q-system for NMT.

Rock properties.
Norwegian Rock and Soil Assoc., Publ. no 5, 3 pp.

Complex geoscience investigation programmes for siting and control of tunnel projects.

Mapping of the rock strength by refraction seismic measurements (in Swedish).
IVA Report 38, pp. 25-35.

Herget G. (1982):
Probabilistic slope design for open pit mines.

Classification of structures on joint surfaces.

Hoek E. (1965):
Rock fracture under static stress conditions.

General report, surface workings in rock.

Underground excavations in rock.

Hoek E.: (1981):
Geotechnical design of large openings at depth.
Rapid Exc. & Tunn. Conf. AIME 1981.

Hoek E. (1982):
Geotechnical considerations in tunnel design and contract preparation.

Hoek, E. (1983):
Strength of jointed rock masses.
The Rankine Lecture 1983, Geotechnique 33, no 3 pp 187-223

Hoek E.(1986):
Practical rock mechanics - development over the past 25 years
Keynote address delivered 24.2.1986

A modified Hoek-Brown failure criterion for jointed rock masses.

Hoek E. (1994):
Strength of rock masses.

Hoek E. (1994):
The challenge of input data for rock engineering.

Houghton D.A. (1976):
The role of rock quality indices in the assessment of rock masses.

Discontinuities and rock mass geometry.

Discontinuity frequency in rock masses.

Rock mechanics principles in engineering practice.
CIRIA Ground Engineering report, 72 pp.

Hustrulid W.A. (1971):
A comparison of laboratory cutting results and actual tunnel boring performance.
Mining Dept., Colorado School of Mines, Golden, Colorado.

A classification of rock conditions for tunneling.
Quarterly Reports, Vol. 11, No. 2, pp. 71-74.

Ilseley R.C., Costello M.J. (1983):
Discontinuity characterization for underground openings in the Milwaukee water pollution abatement program.

International Society for Rock Mechanics (ISRM), Commission on standardization of laboratory and field tests (1971):
Suggested methods for determining the slaking, swelling, porosity, density and related rock index properties.
International Society for Rock Mechanics (ISRM), Commission on "Definition of the most promising lines of research" (1971):

International Society for Rock Mechanics (ISRM), Commission on standardization of laboratory and field tests (1972):
Suggested methods for determining the uniaxial compressive strength of rock materials and the point load strength index.
Committee on laboratory tests. Int. Soc. Rock Mech., Lisbon.

International Society for Rock Mechanics (ISRM), Commission on standardization of laboratory and field tests (1978):
Suggested methods for the quantitative description of discontinuities in rock masses.

Basic geotechnical description of rock masses.

International Society for Rock Mechanics (ISRM) working groups (1981):
Rock characterization, testing and monitoring.

Suggested methods for determining the uniaxial compressive strength and deformability of rock materials.

Characterization of swelling rock.

Suggested method for determining point load strength.

International Society for Rock Mechanics, Commission on testing methods (1989):
Suggested method for large scale sampling and triaxial testing of jointed rock.

International Society for Rock Mechanics (ISRM), Commission on failure mechanisms around underground excavations, First report (1989):
Observations, researches and recent results about failure mechanisms around single galleries.
International Tunnelling Society (ITA) (1990):
ITA Recommendations on contractual sharing of risks.

Isaksen V. and Solberg E. (1990):
Fullface boring at Svartisen power plant (in Norwegian)
Final dissertation work University of Trondheim, Norway

Behavior of closely jointed rock.

Janelid I. (1965):
Rock mechanics and its significance in mine and rock excavation design (in Swedish).
Royal Academy of Engineering Sciences, Report 142, pp 7-12. 1965

The stability of slopes cut into natural rock.

John K.W.: (1969):
Civil engineering approach to evaluate strength and deformability of regularly jointed rock
11th int. symp. on rock mech. pp. 69-80

John K.W. and Baudendistel M. (1981):
A compromise approach to tunnel design.

Judd W.R. and Huber C. (1961):
Correlation of rock properties by statistical methods.

Evaluation of rock classifications at B. C. Rail Tumbler Ridge Tunnels.

Karmis M. (ed.) (1986):
Application of rock characterization in mine design.
SME Publication, Littleton Co.

A study on the quantitative estimation of joint distribution and the modelling of jointed rock masses.
Tokyo Electric Power Services Co., Engineering geological department, Civil operation center. 10 pp.

Kirkaldie L. (1988):
Rock classification systems for engineering purposes.

Kleeberger J. (1992):
Private communication.
Knill J.L. (1969):
The application of seismic methods in the prediction of grout take in rock.

Koerner U. (1971):
Critical notes on rock classification in underground construction from a geological point of view.
Die Bautechnik, No. 9, pp. 318-319.

Determination of rock mass strength by rock mass classification - Some experiences and questions from Boliden mines.

Krauland N. (1992):
Private communication.

An introduction to statistical models in geology.

Lane K.S. (1948):
Discussion on A.M. Casagrande: 'Classification and identification of soils'.
Trans. of Am. Soc. of Civil Engn., Vol. 113, pp. 950 - 951.

LaPointe P.R. (1988):
A method to characterize fracture density and connectivity through fractal geometry.

Lardelli T. (1992):
Private communication.

Lauffer H. (1958):
Classification for tunnel construction (in German)

Lauffer-Innsbruck H. (1988):
On rock classification regarding cutting. (in German)
Felsbau, Vol. 6, pp. 137-149.

Lindblom U.E. (1986):
Developments in design methods for large rock caverns.

Lislerud A. (1988):
Hard rock tunnel boring: Prognosis and costs.

Louis C. and Perrot M. (1972):
Three dimensional investigation of flow conditions at Grand Maison Dam site.
Proc. Symp. on Percolation Through Fissured Rock, Stuttgart

Löset F. (1990):
Use of the Q-method for securing small weakness zones and temporary support.(in Norwegian)
Norwegian Geotechnical Institute, internal report No. 548140-1, 40 pp.

Löset F. (1992):
Support needs compared at the Svartisen road tunnel.
Tunnels & Tunnelling, June 1992, 3 pp.

Madan M.M. (1991):
An analytical approach to tunnel construction.

Characterizing jointed rock for tunnel design.
Proc. of Conf. on Large Underground Openings, Florence, Italy, pp. 613-619.

Martin D. (1988):
TBM tunnelling in poor and very poor rock conditions.

Matula M. (1969):
Engineering geologic investigations of rock heterogeneity.

Engineering topology of rock masses.

Maury V. (1976):
An example of underground storage in soft rock (chalk).

Application of seismic surveying, orientated drilling and rock classification for site investigation of rock tunnels.

Site characterization in rock engineering.
22nd U.S. Symp. on Rock Mechanics, pp. 49-66.

Measurement of rock mass properties for mine design.

Nakano R. (1979):
Geotechnical properties of mudstone of Neogene Tertiary in Japan.

Joint spacing in sedimentary rocks.
J. of Structural Geol., Vol 13, No. 9, pp 1037 - 1048.

Recent developments of the large-scale triaxial test.

Natau O. (1990):
Scale effects in determination of the deformability and strength of rock masses.
Proc. Intn. Conf. on Scale Effects in Rock Masses, pp. 77 - 88.

Large scale Triaxial tests in connection with a FEM analysis for the determination of the properties of a transversal isotropic rock mass.
Proc. 8th Int. Congress on Rock Mechanics, Tokyo, 9 pp.

Some geologic factors in the location design and construction of large underground chambers in rock.

Rock engineering.
Hydropower Development, publ. no. 9, Norwegian Institute of Technology, Division of Hydraulic Engineering, 156 pp.

Nilsen B. and Ozdemir L. (1993):
Hard rock tunnel boring prediction and field performance.

Nord G., Olsson P. and By T.L. (1992):
Probing ahead of TBM's by geophysical means.

Norsk Bergmekanikkgruppe (1985):
Handbook in engineering geology - rock. (in Norwegian)
Tapir, Trondheim, Norway, 140 pp.

Norwegian Institute of Technology (1994):
Fullface boring of tunnels (in Norwegian).

Naming geological units in Norway,
Norsk Geologisk Tidsskrift, Vol. 69, Suppl.

Obermeier S.E. (1974):
Evaluation of laboratory techniques for measurement of swell potential of clays.

Olivier H.J. (1976)
Importance of rock durability in the engineering classification of Karoo rock masses for tunnelling.

Pacher F. (1975):
The development of the New Austrian Tunnelling Method and the main features in design work and construction.
16th Symp. on Rock Mechanics, Minneapolis, pp. 223-232.

Pacher F. (1978):
The conception of safety in special cases of rock construction. (in German)

The volumetric joint count - a useful and simple measure of the degree of jointing.
Proc. IV Int. Congr. IAEG, New Delhi, 1982, pp V.221-V.228.

Geo-investigation and advanced tunnel excavation technique important for the Vardö subsea road tunnel.

Application of the volumetric joint count as a measure of rock mass jointing.

Palmström A. (1986):
The volumetric joint count as a measure of rock mass jointing.

Palmström A. (1986):
A general, practical method for identification of rock masses to be applied in evaluation of rock mass stability conditions and TBM boring progress. (in Norwegian)

Palmström A. and Berthelsen O. (1988):
The significance of weakness zones in rock tunnelling.

On the anisotropy of the Athenian schist and its relation to weathering.
A recommended rock classification for rock mechanics purposes.

Patton F.D. (1966):
Multiple modes of shear failure in rock.

Patton F.D., Deere D.U. (1970a):
Significant geologic factors in slope stability.

Key questions in rock mechanics.

Where has all the judgement gone?
Laurits Bjerrum memorial lesson no 5, Norwegian Geotechnical Institute, Oslo, Norway

Peters C.M.F. (1972):
A structural interpretation of the Garlock fault at the Tehachapi crossing.

Geological factors significant to the stability of slopes cut in rock.

Piteau D.R. (1973):
Characterizing and extrapolating rock joint properties in engineering practice.
Rock Mechanics, Suppl. 2, pp. 5-31.

Poisel R. (1990):
The dualism-continuum of jointed rock.

Progress in understanding jointing over the past century.

Laws of rock behavior in the earth's crust.

Price N.J. (1981):
Fault and joint development in brittle and semi-brittle rock.

Mapping geological conditions in tunnels

Characterization of rock masses for construction of underground openings from numeric calculation of stresses, deformations and ground water flow. (in Swedish)
Väg och vattenbyggaren, no. 4/93, pp. 13 - 18.

Rabcewicz L.v. (1964/65):
The new Austrian tunnelling method.

Rabcewicz L.v. (1975):
Tunnel under Alps uses new, cost-saving lining method.
Civil Engineering-ASCE, October 1975, pp.66-68.

Rabcewicz L.v. and Golser J. (1973):
Principles dimensioning the support system for the new Austrian tunnelling method.
Water Power, March 1973, pp. 88-93

Engineering behaviour of phyllites.

Robbins R.J. (1980):
Present trends and future directions in tunnelling.

Robertson A.MacG. (1970):
The interpretation of geological factors for use in slope theory.

Robinson C.S. (1972):
Prediction of geology for tunnel design and construction.
Rapid Tunneling and Excavation Conf., pp 105-114.

Rokoengen K. (1973):
Classification of clay zones in rock. (in Norwegian)
(Extract from dr. thesis on 'Swelling properties of clay zones in rock')

Rostani J. (1992):
Design optimization, performance prediction and economic analysis of tunnel boring machines for the construction of the proposed Yucca Mountain nuclear waste repository.
Dr. thesis, Colorado School of mines, 195 pp.

Ruiz M.D. (1966):
Some technological characteristics of twenty-six Brazilian rock types.

Analysis of rock spalling for tunnels in steep valley sides (in Norwegian).

New Zealand experience with engineering classifications of rock for the prediction of rock support.

A mathematical representation of jointed rock masses and its application.

Salustowicz A. (1965):
Zarys mekaniki gorotworu Katowice.
Wydawnictwo "Slask".

Schneider H.J. (1976):
The friction and deformation behaviour of rock joints.

Scholz C.H. (1990):
The mechanics of earthquakes and faulting.

Methods of measurements for rock support and installations in road tunnels using the new Austrian tunnelling method. (in Germain)

Selmer-Olsen R. (1950):
On faulting and crushed zones in the Bamble formation. (In Norwegian).

Selmer-Olsen R. (1964):
Geology and engineering geology. (in Norwegian)
Tapir, Trondheim, Norway, 409 pp.

Engineering geology. Part 1. (in Norwegian)
Tapir, Trondheim, Norway, 230 pp.

General engineering design procedures.
Norwegian Tunnelling Today, Tapir 1988, pp. 53-58

Tunnel collapses in swelling clay zones, part 1.
Tunnels & Tunnelling, November 1989, pp.

Tunnel collapses in swelling clay zones, part 2.
Tunnels & Tunnelling, January 1990, pp.
Volumetric rock quality designation.

Rock quality charts for log-normally distributed block sizes.

Consideration of the geomechanics classification of Bieniawski.

Discussion of paper by K.L. Gunsallus and F.H. Kulhawy, "A comparative evaluation of rock strength measures".

Strength anisotropies in rocks.

SINTEF (1990):
Deformation and rock stress measurements at Svartisen power plant, Efjord and Stetind road tunnels (in Norwegian).
SINTEF Report no. STF36 F90059.

SINTEF (1993):
Fullface boring Dalåa - Torsbjørka (in Norwegian)

Sjögren B., Övsthus A. and Sandberg J. (1979):
Seismic classification of rock mass qualities.
Geophysical Prospecting, Vol. 27, No. 2, pp. 409-442.

Sjögren B. (1984):
Shallow refraction seismics.

Sjögren B. (1993):
Private communication.

Snow D. (1966):
Disc'n.

Snow D. (1968):
Fracture deformation and changes of permeability and storage upon changes of fluid pressure.
Quarterly Colorador School of Mines, 63, pp. 201-244.
Zur Frage der Sohlhebungen in Tunneln des Gipskeupers.

Fullface boring at Svartisen power plant (in Norwegian)
Final dissertation work University of Trondheim, Norway

Influence of specimen size and geometry on uniaxial compressive strength of rock.

Stimpson B.: (1982)
A rapid field method for recording joint roughness profiles. Technical note.

Stini I. (1950):
Geology in tunnel construction (in German).

Swan G. (1981):
Tribology and the characterization of rock joints.

Determination of pillar strength by full scale pillar tests in the Laisvall mine.

Terzaghi K. (1946):
Introduction to tunnel geology.
In Rock tunnelling with steel supports, by Proctor and White, pp 5 - 153.

Terzaghi K. (1953):
Address.

Terzaghi R. (1965):
Sources of error in joint surveys.

Iceland's Blanda hydroelectrical project: Monitoring of deformations, rock support and testing of rock anchors in the powerhouse cavern.

Strength and permeability tests on ultra-large Stripa granite core.

Tirén S.A. and Beckholmen M. (1992):
Rock block map analysis of southern Sweden.

Geologic origin and distribution of swelling clays.

Tsidzi K.E.N. (1986):
A quantitative petrofabric characterization of metamorphic rocks.
Bull. Int.Assoc. Engrng. Geol. no 33, pp. 3 - 12.

Tsidzi K.E.N. (1987):
Foliation index determination for fine-grained metamorphic rocks.

Tsidzi K.E.N. (1987):
Compressive strength anisotropy of foliated rocks.

Study of the rock mass discontinuity system using photoanalysis.

Investigation of some rock joint properties: Roughness angle determination and joint closure.

Design guidelines and roof control standards for coal mine roofs.

Design and support of underground excavations in highly stressed rock.

Wahlstrom, E.E. (1973):
Tunnelling in rock.
Amsterdam Elsevier, 250 p.

Wallis P.F., King M.S. (1980):
Discontinuity spacings in a crystalline rock.

Ground supports for tunnels in weak rocks.

Terminology for describing the spacing of discontinuities of rock masses.

Support determination based on geologic predictions.

Uniform rock classification for geotechnical engineering purposes.
Transportation Research Record 783, National Academy of Sciences, Washington D.C., pp. 9-14

The unified classification system.

Wittke N. and Louis C. (1969):
Several quick tests for determining the mechanical character of rocks.
Geotechnical Colloq., Toulouse, France

Estimating Hoek-Brown rock mass strength parameters from rock mass classifications.
Transportation Research Record 1330, pp. 22-29.

Xuecheng D. (1993):
Rock mechanics investigations related to the three gorges dam project.