SOME REFERENCES of published papers
in geology, engineering geology, rock mechanics and rock engineering


47. Association of Geotechnical Specialists (1994): Validation and use of geotechnical software. AGS guide, version 1.0. Available from AGS, 39 Upper Elmers End Road, Beckenham, Kent, BR3 3QY.


57. Aydan, Ö. (2014): The state of art on large cavern design for underground powerhouses and long-term issues. The second Volume of Encyclopedia on Renewable Energy, John Wiley and Sons


December 2014
as pdf on www.SveBeFo.se.


237. Blindheim O.T. and Skeide S. (2002): Determination and co-operation is crucial for rock mass grouting to satisfy strict environmental requirements. Water control in Norwegian tunnelling, Publication No. 12, Norwegian Soil and Rock Engineering Association, Norwegian Tunnelling Society, NFF.


December 2014


541. Dunn C.P. (1923): Elastic stresses in the rock surrounding pressure tunnels. ASCE Transactions, Paper No. 1527, including discussion 1923, pp. 1384-1411.


Technology (KTH), Division of Soil and Rock Mechanics, Stockholm.


800. Health and Safety Executive (1992): The tolerability of risk from nuclear power stations. 1992 HMSO.

Industry Research and Information Association Special Publication 32, 94 p.

Westerley granite at high confining pressure. Lawrence Livermore Laboratory Report, UCRL
51642, 14 pages.


Report SP92-1E, Canada Centre for Mineral and Energy Technology.

and stress dependency of Queenston Shale. Canadian Tunnelling, pp. 115-146.


Africa, 525 p.


programmes for siting and control of tunnel projects. The Technology and Potential of
Tunnelling, Vol. 1, N.G.W. Cook, editor; Johannesburg.


Science, Vol. S2, no. 2.

Ground Engineering, pp. 24-31.


pp. 37–51.

163-178.


the Shiobara power house caverns by some numerical methods for jointed rock mass. J. Geotech. 


319-335.

on the uniaxial compressive strength of rocks. U.S. Bureau of Mines Report of Investigations, 
7234. 16 p.

the Symp. on Exploration for rock engineering, Johannesburg, South Africa, pp. 129-135.

fonction de la temperature, in La Thermomecanique des Roches, Manuels and Methods, BRGM, 
France.

Abstr., Vol. 23, No.2, pp. 171-175.

Proc. RETC, PP. 145 - 165.

No.4, pp. 223-233.

Geomech. Abstr. v. 30(7), 825-829.

899. Huang, S.L., Aughenbaugh, N.B. and Rockaway, J.D. (1986): Swelling pressures studies of 

900. Huang Ziping and Palmström A. (2007): Application of Norwegian subsea tunnel experiences to 
construction of Xiamen Xiang’an subsea tunnel. Chinese Journal of Rock Mechanics and 

134.

1420.

Mi Sci., 2, pp. 127-134.

American Society of Civil Engineers, NewYork.


960. Isaksen V. and Solberg E. (1990): Fullface boring at Svartisen power plant (in Norwegian). Final dissertation work University of Trondheim, Norway


1146. Linkov A.M. (1992): Dynamic phenomena in mines and the problem of stability. Distributed by MTS Systems Corporation, 14000 Technology Drive, Eden Prairie, MN, USA, 55344. Notes from a course of lectures presented by Dr. Linkov as MTS Visiting Professor of Geomechanics at the University of Minnesota, Minneapolis, MN, USA.


1369. NGI (1972): Synopsis of unlined tunnels and shafts with water pressure head greater than 100m together with several tunnels and shafts at lower pressures. Norwegian Geotechnical Institute, Internal Report, 1972.


December 2014


1522. Peck R. B. (1980): Where has all the judgement gone? Laurits Bjerrum memorial lesson no 5, Norwegian Geotechnical Institute, Oslo, Norway


IAEG Journal Paper # 472.

significant engineering risks in tunnelling. Underground Construction in Modern Infrastructure,
Stockholm.

Survey Professional Paper 373, Washington, DC.

Photogrammetric Engineering, 26, pp. 146-147.


1596. Read R.S. (1996): Characterizing excavation damage in highly stressed granite at AECL’s
Underground Research Laboratory. In Proc. Int. Conf. on Deep Geological Disposal of
Society, Toronto.


1598. Read R.S. and Chandler N.A. (1997): Minimizing excavation damage through tunnel design in
adverse stress conditions. In Proceedings of the International Tunnelling Association World

criterion to New Zealand greywacke rocks. In: Proc. 9th Int. Cong. on Rock Mech. Paris, France,
2, pp. 655–660.


University of Surrey.


measurements of a strike-slip fault quantify its morphological anisotropy at all scales. Geophys.


1606. Riedmüller G., (1997): Rock characterization for tunnelling - Engineering geologist’s point of


December 2014


1737. SINTEF (1990): Deformation and rock stress measurements at Svartisen power plant, Efjord and Stetind road tunnels (in Norwegian). SINTEF Report no. STF36 F90059


1750. SKB R-05-18, Svensk Kärnbränslehantering AB.


1776. Snow D. (1968): Fracture deformation and changes of permeability and storage upon changes of fluid pressure. Quarterly Colorador School of Mines, 63, pp. 201-244.


1917. US. Army Corps of Engineers (1968): Hydraulic design criteria. Waterways Experiment Station, Report Reference No. 1-17 AD A092 237,238 (2 Volumes), originally published 1952, revised 1968.


